COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30-3:45 Building: Morrill 2 Room: 222

Topic 7.0: Gradient Descent
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Optimization Perspective

- Recall:

$$
\operatorname{argmin}_{w} L(w, D)
$$

- Viewing $L(w, D)$ as a function, f, of just the weights (and a fixed data set):

$$
\operatorname{argmin}_{w} f(w)
$$

- Note that this is equivalent to maximizing a different function, where $g=-f$

$$
\operatorname{argmax}_{w} g(w)
$$

- We could also write x instead of w :

$$
\operatorname{argmin}_{x} f(x)
$$

- The function being optimized (minimized or maximized) is called the objective function (optimization terminology).
- In this case, our objective function is a loss function (machine learning terminology).
- Question: How do we find the input that minimizes a function?

Local Search Methods

- Start with some initial input, x_{0}
- Search for a nearby input, x_{1}, that decreases f :

$$
f\left(x_{1}\right)<f\left(x_{0}\right)
$$

- Repeat, finding a nearby input x_{i+1} that decreases f (for each iteration i :

$$
f\left(x_{i+1}\right)<f\left(x_{i}\right)
$$

- Stop when:
- You cannot find a new input that decreases f
- The decrease in f becomes very small
- The process runs for some predetermined amount of time
- Called "local search methods" because they search locally around some current point, x_{i}.

"Find a nearby point that decreases f "

- We will consider gradient-based optimizers.
- At any input/point x, we can query:
- $f(x)$: The value of the objective function at the point
- $\frac{d f(x)}{d x}$: The derivative of the objective function at the point
- This is the gradient, and is also written as $\nabla f(x)$

Question: Is a global minimum a local minimum?

Answer: Yes!

Global minimum: A location where the function achieves the lowest value (the argmin).

Local minimum: A location where all nearby (adjacent) points have higher values.

Question: How can we find a point x_{i+1} such that $f\left(x_{i+1}\right)<f\left(x_{i}\right)$? That is, a point that is "lower"? Idea: Move a small amount "downhill"

Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease x_{i} to get x_{i+1}. Negative slope: Increase x_{i} to get x_{i+1}.

Gradient Descent

- Take a step of length α (a small positive constant) in the opposite direction of the slope:

$$
x_{i+1}=x_{i}-\alpha \times \text { slope }
$$

- Note: The slope is $\frac{d f(x)}{d x}$, so we can write:

$$
x_{i+1}=x_{i}-\alpha \frac{d f(x)}{d x} .
$$

- α is a hyperparameter called the step size or learning rate.

Gradient descent, $x_{0}=7, \alpha=0.001$ $f(x)=x^{4}-14 x^{3}+60 x^{2}-70 x$

Question: Why do the points get closer together when we use the same step size, α ?

Why do the points get closer together when

 we use the same step size, α ?$$
x_{i+1}=x_{i}-\alpha \frac{d f(x)}{d x}
$$

- As x_{i} approaches a local optimum, the slope goes to zero.
- This allows for "convergence" to a local optimum.
- Gradient descent can still overshoot the (local) minimum.
- If the step size is small enough (or decayed appropriately over time), gradient descent is guaranteed to converge to a local minimum.
- If it overshoots a minimum by a small amount, it will reverse direction and move back towards the minimum.
- If the step length was always constant, it could forever over-shoot the (local) minimum, not making progress towards the (local) minimum.

