

COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 7.0: Gradient Descent

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Optimization Perspective

• Recall:

 $\operatorname{argmin}_{w} L(w, D)$

- Viewing L(w, D) as a function, f, of just the weights (and a fixed data set): argmin_w f(w)
- Note that this is equivalent to maximizing a different function, where g = -f argmax_w g(w)
- We could also write *x* instead of *w*:

 $\operatorname{argmin}_{x} f(x)$

- The function being optimized (minimized or maximized) is called the **objective function** (optimization terminology).
 - In this case, our objective function is a **loss function** (machine learning terminology).
- **Question**: How do we find the input that minimizes a function?

Local Search Methods

- Start with some initial input, x_0
- Search for a nearby input, x_1 , that decreases f: $f(x_1) < f(x_0)$
- Repeat, finding a nearby input x_{i+1} that decreases f (for each iteration i):

$$f(x_{i+1}) < f(x_i)$$

- Stop when:
 - You cannot find a new input that decreases f
 - The decrease in f becomes very small
 - The process runs for some predetermined amount of time
- Called "local search methods" because they search locally around some current point, x_i .

"Find a nearby point that decreases f"

- We will consider gradient-based optimizers.
- At any input/point *x*, we can query:
 - f(x): The value of the objective function at the point
 - $\frac{df(x)}{dx}$: The derivative of the objective function at the point
 - This is the **gradient**, and is also written as $\nabla f(x)$

Question: Is a global minimum a local minimum? **Answer:** Yes!

Global minimum: A location where the function achieves the lowest value (the argmin).

Local minimum: A location where all nearby (adjacent) points have higher values.

Question: How can we find a point x_{i+1} such that $f(x_{i+1}) < f(x_i)$? That is, a point that is "lower"? **Idea**: Move a small amount "downhill"

Notice: The slope of the function tells us which direction is uphill / downhill. **Positive slope:** Decrease x_i to get x_{i+1} . **Negative slope:** Increase x_i to get x_{i+1} .

Gradient Descent

• Take a step of length α (a small positive constant) in the opposite direction of the slope:

$$x_{i+1} = x_i - \alpha \times \text{slope.}$$

- Note: The slope is $\frac{df(x)}{dx}$, so we can write: $x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$.
 - α is a hyperparameter called the step size or learning rate.

Gradient descent, $x_0 = 7$, $\alpha = 0.001$ $f(x) = x^4 - 14x^3 + 60x^2 - 70x$

Question: Why do the points get closer together when we use the same step size, α ?

Why do the points get closer together when we use the same step size, α ?

$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$$

- As x_i approaches a local optimum, the slope goes to zero.
- This allows for "convergence" to a local optimum.
- Gradient descent can still overshoot the (local) minimum.
- If the step size is small enough (or decayed appropriately over time), gradient descent is guaranteed to converge to a local minimum.
 - If it overshoots a minimum by a small amount, it will reverse direction and move back towards the minimum.
- If the step length was always constant, it could forever over-shoot the (local) minimum, not making progress towards the (local) minimum.