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Optimization Perspective
• Recall:

argmin𝑤𝑤 𝐿𝐿 𝑤𝑤,𝐷𝐷
• Viewing 𝐿𝐿(𝑤𝑤,𝐷𝐷) as a function, 𝑓𝑓, of just the weights (and a fixed data set):

argmin𝑤𝑤 𝑓𝑓 𝑤𝑤
• Note that this is equivalent to maximizing a different function, where 𝑔𝑔 = −𝑓𝑓

argmax𝑤𝑤 𝑔𝑔 𝑤𝑤
• We could also write 𝑥𝑥 instead of 𝑤𝑤:

argmin𝑥𝑥 𝑓𝑓 𝑥𝑥
• The function being optimized (minimized or maximized) is called the 

objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?



Local Search Methods

• Start with some initial input, 𝑥𝑥0
• Search for a nearby input, 𝑥𝑥1, that decreases 𝑓𝑓:

𝑓𝑓 𝑥𝑥1 < 𝑓𝑓 𝑥𝑥0
• Repeat, finding a nearby input 𝑥𝑥𝑖𝑖+1 that decreases 𝑓𝑓 (for each 

iteration 𝑖𝑖):
𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓𝑓
• The decrease in 𝑓𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally 
around some current point, 𝑥𝑥𝑖𝑖.



“Find a nearby point that decreases 𝑓𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥𝑥, we can query:

• 𝑓𝑓 𝑥𝑥 : The value of the objective function at the point
• 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑥𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓𝑓(𝑥𝑥)



Local minimum: A location where all nearby 
(adjacent) points have higher values.

Global minimum: A location where the function 
achieves the lowest value (the argmin). 

Question: Is a global minimum a local minimum?
Answer: Yes!



𝑥𝑥𝑖𝑖 = 7

Question: How can we find a point 𝑥𝑥𝑖𝑖+1 such that 𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”



Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑥𝑖𝑖  to get 𝑥𝑥𝑖𝑖+1. Negative slope: Increase 𝑥𝑥𝑖𝑖  to get 𝑥𝑥𝑖𝑖+1.



Gradient Descent

• Take a step of length 𝛼𝛼 (a small positive constant) in the opposite 
direction of the slope:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼 × slope.

• Note: The slope is 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, so we can write:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

.

• 𝛼𝛼 is a hyperparameter called the step size or learning rate.



Gradient descent, 𝑥𝑥0 = 7, 𝛼𝛼 = 0.001
𝑓𝑓 𝑥𝑥 = 𝑥𝑥4 − 14𝑥𝑥3 + 60𝑥𝑥2 − 70𝑥𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼𝛼?



Why do the points get closer together when 
we use the same step size, 𝛼𝛼?

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

• As 𝑥𝑥𝑖𝑖 approaches a local optimum, the slope goes to zero.
• This allows for “convergence” to a local optimum.
• Gradient descent can still overshoot the (local) minimum.
• If the step size is small enough (or decayed appropriately over time), 

gradient descent is guaranteed to converge to a local minimum.
• If it overshoots a minimum by a small amount, it will reverse direction and move 

back towards the minimum.
• If the step length was always constant, it could forever over-shoot the 

(local) minimum, not making progress towards the (local) minimum.
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